Coding Psychological Constructs in Text Using Mechanical Turk: A Reliable, Accurate, and Efficient Alternative

نویسندگان

  • Jennifer Tosti-Kharas
  • Caryn Conley
چکیده

In this paper we evaluate how to effectively use the crowdsourcing service, Amazon's Mechanical Turk (MTurk), to content analyze textual data for use in psychological research. MTurk is a marketplace for discrete tasks completed by workers, typically for small amounts of money. MTurk has been used to aid psychological research in general, and content analysis in particular. In the current study, MTurk workers content analyzed personally-written textual data using coding categories previously developed and validated in psychological research. These codes were evaluated for reliability, accuracy, completion time, and cost. Results indicate that MTurk workers categorized textual data with comparable reliability and accuracy to both previously published studies and expert raters. Further, the coding tasks were performed quickly and cheaply. These data suggest that crowdsourced content analysis can help advance psychological research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Efficient Creation of an Accurate Sentence Fusion Corpus

Sentence fusion enables summarization and question-answering systems to produce output by combining fully formed phrases from different sentences. Yet there is little data that can be used to develop and evaluate fusion techniques. In this paper, we present a methodology for collecting fusions of similar sentence pairs using Amazon’s Mechanical Turk, selecting the input pairs in a semiautomated...

متن کامل

Corpus Creation for New Genres: A Crowdsourced Approach to PP Attachment

This paper explores the task of building an accurate prepositional phrase attachment corpus for new genres while avoiding a large investment in terms of time and money by crowdsourcing judgments. We develop and present a system to extract prepositional phrases and their potential attachments from ungrammatical and informal sentences and pose the subsequent disambiguation tasks as multiple choic...

متن کامل

Real User Evaluation of Spoken Dialogue Systems Using Amazon Mechanical Turk

This paper describes a framework for evaluation of spoken dialogue systems. Typically, evaluation of dialogue systems is performed in a controlled test environment with carefully selected and instructed users. However, this approach is very demanding. An alternative is to recruit a large group of users who evaluate the dialogue systems in a remote setting under virtually no supervision. Crowdso...

متن کامل

Creating a Bi-lingual Entailment Corpus through Translations with Mechanical Turk: $100 for a 10-day Rush

This paper reports on experiments in the creation of a bi-lingual Textual Entailment corpus, using non-experts’ workforce under strict cost and time limitations ($100, 10 days). To this aim workers have been hired for translation and validation tasks, through the CrowdFlower channel to Amazon Mechanical Turk. As a result, an accurate and reliable corpus of 426 English/Spanish entailment pairs h...

متن کامل

Using Amazon Mechanical Turk for linguistic research1

Amazon’s Mechanical Turk service makes linguistic experimentation quick, easy, and inexpensive. However, researchers have not been certain about its reliability. In a series of experiments, this paper compares data collected via Mechanical Turk to those obtained using more traditional methods One set of experiments measured the predictability of words in sentences using the Cloze sentence compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016